

 SQL Server and Oracle

Axiell ALM Netherlands BV

Copyright © 1992-2022 Axiell ALM Netherlands BV® All rights re-
served. Adlib® is a product of Axiell ALM Netherlands BV®

The information in this document is subject to change without notice

and should not be construed as a commitment by Axiell ALM Nether-
lands BV. Axiell assumes no responsibility for any errors that may
appear in this document. The software described in this document is
furnished under a licence and may be used or copied only in accord-
ance with the terms of such a licence. While making every effort to
ensure the accuracy of this document, products are continually being
improved.

As a result of continuous improvements, later versions of the products
may vary from those described here. Under no circumstances may this
document be regarded as a part of any contractual obligation to sup-
ply software, or as a definitive product description.

Contents

1 Database platforms compared 1

2 SQL database analysis 3
2.1 A full record in one table cell 4
2.2 Keep a journal of changes to records 6

2.2.1 Adlib for Windows: Legacy option 6
2.2.2 Axiell Collections: Record history option 7

2.3 Indexes 9
2.4 Pointer files 10
2.5 The 6.5.0 pointer file structure 10
2.6 Record locks 12
2.7 Specific rights per record in separate table 13
2.8 ISO date tables 14
2.9 A single table for counters 14
2.10 Examples 15

3 Remarks 21

4 Changing the SQL database collation 22

 1

1 Database platforms compared

From Adlib 6.0, you can approach SQL Server and Oracle databases
through Adlib, aside from Adlib’s proprietary .CBF format. To this end,
you can have your Adlib databases converted to the other format.

Although the Adlib CBF database format is very well suited for our
applications, there are also advantages in using SQL Server or Oracle.
These are for example:

• The format is supported all around the world.

• The client/server implementation allows for faster multiple-user

access.

• In SQL Server and Oracle-databases, your data is very safe. For

example, these types of databases cannot be opened and read
from within the Windows file system.

• SQL Server and Oracle database cannot be removed if a user
hasn’t got the right authorization.

• SQL Server/Oracle also has replication advantages, because you
can set up such a database to automatically copy every change

that a user enters into a record and saves, to a backup database

elsewhere.

SQL Server and Oracle are so-called relational databases. A relational
database consists of a collection of tables, with in them usually a
(very) limited number of field columns, in which the user can search
for data, or harvest and rearrange data in many different ways in so-
called views or reports, without having to reorganize those tables. So

the structure of such a database is relatively simple. But that has its
disadvantages too:

• The occurrences (field repetitions) for example, that occur often in
an Adlib CBF file, have no similar equivalent in even a minimally
normalized relational database. (Normalization is the efficient or-

ganizing of a relational database by following a number of guide-
lines, like removing redundant data in tables, by splitting up those

tables. For a relational database this save disk space and makes
sure that data is stored logically. Do note however, that Adlib CBF
files have practically no redundancy, and already need only a min-
imum of disk space by default.)
The normalization that usually is being applied to relational data-
bases, can lead to hundreds or thousands of tables, for complex

linked data with field repetitions like in museum or archive data-

 2

bases. And all those tables have to be rejoined during runtime,

which uses a lot of memory and processor time.

• Another disadvantage is that there exists a very explicit link be-
tween a relational database and the programs that use it. In prac-
tice this means that changes to a table structure, usually also
means adjustments en recompilation of the software, while that is
not necessary for Adlib-databases: for the latter you can change
the structure of a database, adjust the graphical interface if nec-

essary, and directly start the new application.

The joining of these two technologies has led to the possibility to ap-
proach (Adlib specific) relational databases, from Adlib 6.0. After all,

we want to keep using largely the same software, the same user inter-
face and the same maintenance programs (Adlib Designer), whilst we
do want to offer our customers the advantages of SQL Server or Ora-
cle but not the disadvantages.

That is why we chose to once-only convert Adlib databases (filled or
empty) to a relational database, if the customer would like to use this
functionality. (Note that its use and support for it, cost extra. Our
sales department can tell you more about it.)
After that conversion, the Adlib databases will have been converted to
as many tables in one relational database. Also, each index file, word
list, pointer file, lock file and cnt file will have received its own table

(the latter three from 6.1.0). For the conversion to the new format,

pointer files are structured into XML, which allows for greater ex-
changeability, and better readability at table level. A whole record in a
CBF file will have been inserted in one table cell as an XML document,
accompanied by the record number in another column. This XML doc-
ument was hexadecimally encoded in SQL Server 2000 (as a so-called

BLOB: Binary Large Object), because only printable characters were
allowed in a table cell. From SQL Server 2005 (and after a possible
new conversion of your database for compatibility with Adlib 6.5.0)
this is history, and each record will be saved as a readable XML docu-
ment in the (Adlib SQL or Adlib Oracle) database, and will be dis-
played as such in database server management programs (like Mi-

crosoft SQL Server Management Studio Express), which allows data-

base managers to more easily manage and analyze such a database.
With SQL (Structured Query Language, the default interface for rela-
tional databases) and/or the SQL Server Enterprise Manager or SQL
Server Management Studio Express, you will be able to search index
tables and word lists (for instance for integrity checks and possibly
repairs), as well as the records themselves (as long as the XML docu-
ments aren’t hexadecimally encoded). However, we do strongly advise

against editing your data on this level. So normally, you’ll need an
Adlib application and software to be able to edit, search and fill your
new SQL Server or Oracle database.

 3

2 SQL database analysis

After installation, setup and database conversion (see the Installing
Museum, Library and Archive manual), you may open, in a/o Mi-
crosoft’s SQL Server Management Studio (Express) or SQL Server

Enterprise Manager, an Adlib SQL Server database, and in the Oracle
Enterprise Manager Console an Adlib Oracle database, if you would
like to see the structure or contents of it – in general we advise to not
make changes in the database this way. (For the purpose of repairing
damaged files by Axiell employees, this advice may be ignored.)
In SQL Server Management Studio Express for instance, you open a

table by opening your database folder, click the Tables subfolder, and

in the left or right window pane right-click the desired table, and in
the pop-up menu choose Open table: all rows will be retrieved. In SQL
Server Management Studio (2008) you right-click a table and click
Select top 1000 rows to retrieve the first 1000 rows, for example.
In Microsofts SQL Server Management Studio (Express), right-click the
folder of your database in the left window pane and choose New query

in the pop-up menu to be able to enter an SQL query for that data-
base, or click the New query button in the toolbar for a the selected
database. (In the yellow bar at the bottom of the window you can
always see for which database you are currently executing a query.) A
query entered in the middle window pane can be executed by clicking

the Execute button. SQL allows you to research the structure and con-
tents of each table.

SQL (Structured Query Language) is somewhat comparable to
the Adlib expert search language. For instance:
SELECT * FROM collect means that you want to retrieve all

records from the collect table. And SELECT count(*) FROM

thesau_term for example, counts the number of terms in the

term index of the thesaurus.

In an Adlib SQL Server database, the name of a table indicates its
contents. A single name like collect, is a former Adlib database. A

double name, in the format databasename_indexname, indicates an
individual index. If the second half of such a double name is literally
equal to or begins with “pointerfiles”, then it concerns a table in which

the pointer files for the relevant SQL main table (ex-Adlib database)
are stored.

Note that SQL queries on tables that represent former Adlib databases
can be complex, since each record has been put in its own, single
field. It’s easier to search tables of Adlib indexes, although many in-
dexes only contain record numbers (for indexed link reference fields).
So, amongst others, you have to know how Adlib stores and processes

 4

links, and what the difference is between term indexes and the word-

list for example, to be able to understand the contents of and the rela-

tion between the different SQL Server tables. See the Designer Help
and/or the Adlib software functionality profile document for all infor-
mation about these mechanisms.

2.1 A full record in one table cell

So, of an opened database the contents of a record are saved and
displayed in one field. The record contents in this field are structured
in XML. The priref, the creation date and modification date are in sep-

arate columns, but are also attributes of the XML <record> element

(the latter is convenient for a possible export of XML records), namely
as follows:

<record priref=“nnnn” creation=“yyyy-mm-ddThh:mm:ss” modi-

fication=“yyyy-mm-ddThh:mm:ss”>

 <field tag=“tt” occ=“nn”>data for field</field>

 <field>.....</field>

</record>

From 6.6.0, the creation and modification date and time, and the
name of the current user can automatically be stored per field as

metadata in an edited record as well, if the database has been set up
for this via the Store modification history option in Adlib Designer. You
don’t need to make any settings to activate this functionality. To be

precise: this metadata will be stored per edited field occurrence per
data language, as attributes of the field node in the XML. For example:

<field tag="T9" occ="2" cd="2011-04-11T11:26:51" cu="erik"

md="2011-04-11T11:26:51" mu="erik">Bronski House journey

back to Poland</field>

The attributes have the following meaning: cd stands for creation

date, cu means creation user, md modification date and mu is the

modification user.

You can’t show this metadata in your adlwin.exe application, but via
Designer you can create indexes on the metadata and define access
points for them, so that you’ll be able to search for records with fields
that have been changed after a certain date and/or by a particular
user.

http://www.adlibsoft.com/support/manuals/maintenance-guides/designer-help
http://www.adlibsoft.com/support/manuals/user-guides/adlib-software-functionality-profile

 5

Retrieving records

For instance, retrieve all rows from the document table, via: select *

from document. In SQL Server Management Studio Express for exam-

ple, the result is presented as follows:

Each row contains one record. The priref column contains the record
number, creation the creation date and modification the last modifica-
tion date of the record. The data column contains the records in their

entirety. The data is directly readable in SQL Server 2005 or higher
when you are working with Adlib 6.5.0 or higher.

In SQL Server 2000, records are encoded hexadecimally (indi-
cated by 0x) here. (Note that in the SQL Server Enterprise
Manager the data column only indicates that its content is bi-
nary, and doesn’t display the actual contents like here in SQL

Server Management Studio Express.) In principle you can

(programmatically or via a handy conversion website like
Translator, Binary) convert the complete hexadecimal string to
ASCII. Every two alphanumerical characters in here represent
one ASCII character. 3C for example, is equal to decimal 60,
and the 60th ASCII character is “<”, the start of an XML tag.
And hex 72 for instance, translates to “r”. So every XML record

starts with <record (hexadecimally: 3c 72 65 63 6f 72 64)

Thus, should you desire to build your own application as the interface
for this data, instead of just using your Adlib applications, then you

http://home2.paulschou.net/tools/xlate/

 6

can process each retrieved record as XML. To be able to actually find

certain records, you will have to use the index tables which exist for

many fields.

2.2 Keep a journal of changes to records

From 6.6.0 you can let Adlib (and Axiell Collections from 1.4) log all
saved changes in records, if you are using an Adlib SQL Server or
Adlib Oracle database. This allows for easy backtracking to see who,
when and which changes have been entered, or you can use the
change log to find and restore the original data when incorrect data

has been filled in.

2.2.1 Adlib for Windows: Legacy option

After this functionality has been set for an Adlib database (see the

Designer help for more information), for every record which has been
edited by a user an extra record will be created in the relevant Adlib
database table in the Adlib SQL Server or Adlib Oracle database, and
this extra record will have the negated number of the original record
number: for example, the first change in a record with the number
171 causes the creation of a record with the number -171. In this
“negative” record, all* changes in the record will be logged from now

on: each data change will be saved in a new field occurrence in this
record. Note that the size of your database will increase substantially.

* Only changes in linked fields and any merged-in fields won’t be
logged.

Viewing the journal record in XML

You cannot view the journal record itself in your adlwin.exe
application, but you can in your SQL Server management software if

necessary.

 7

In this example you can see several negative records with the owner
“_journal_”. Click the underlined data to open it in a separate tab. You

will see the stored XML in this journal record.

2.2.2 Axiell Collections: Record history option

After this functionality has been set for an Adlib database (see the
Designer help for more information), in a separate table per Adlib
database in the SQL Server database a new table row will be created

for every newly created record, for every edited record and for every
deleted record in Axiell Collections 1.4 or Adlib for Windows 7.6 or
higher.

 8

Viewing the journal tables in SQL Server Management Studio

Until late 2019 the journal table names were formatted like

dbo.journal.<database name>. Later, such a newly created table by
Collections was named <database name>_journal (e.g.
collect_journal) to bring it in line with typical table naming practices.
The data in the journal is most useful if you search on a particular
record number and sort ascending on sequence or list all records and
sort ascending on priref first and then on sequence, for example:

SELECT TOP 10000 [id]
 ,[sequence]
 ,[priref]
 ,[modification]
 ,[user]
 ,[type]
 ,[version]
 ,[delta]
 ,[history]
 FROM [adlib-mymuseum].[dbo].[journal.collect]
 ORDER BY priref,sequence ASC

Sorting on sequence makes sure that the changes to a record are
listed in chronological order from top to bottom with the oldest change

on top. All changes to a particular record will be grouped too (see the
priref column).
The modification column displays the modification date and time of
the change, while the user column contains the user name of the user
who made the change.
The type column may contain either the number 0, 1 or 2. 0 means

the creation of a record, 1 a change to an existing record and 2 the
deletion of a record.
The version column contains the version of the record with the same
record number. If a record is deleted, it is possible that a newly
created record gets the same record number: this will then be version
2 of the record. This can be repeated infinitely. It allows you to

distinguish versions and to look up logged data in previous versions of

the record with this record number.
The delta column contains XML representing the newly added data in
one or more fields and occurrences. (You may disregard the structure
of the XML indicated by nodes like <de s="6" d="0">.) For deleted

records, the XML will contain no data.
The old data in fields in which data was replaced (only those) can be

found in the history column. NULL indicates that no data was
replaced, only added. Of deleted records, their entire contents can be
found here.

 9

2.3 Indexes

In Adlib SQL (and Adlib Oracle), indexes are stored in separate tables.

From Adlib 6.5.0, an index table has eight columns. Per index key
there is one row in such a table. The columns are:

• Term contains the key on which you can search (although the
term field may contain linked-record numbers). The indexed val-
ues in this column are stored without any accents and entirely in
lower case.

• Display term contains the indexed term as it has been entered by

the user, including any accents and capitals.

• Priref contains the record number of the record from which the
indexed term originates.

• Domain contains the name of the domain to which a term may
belong. (From Adlib 6.5.0, the double colon and the domain no
longer appear in the Term column.)

• Strippedterm contains the indexed term but without any punctua-
tion marks like hyphens, quotes and comma’s.

• Dmp_primary (primary key) may contain the primary phonetic
code, as determined by the DoubleMetaphone algorithm.

• Dmp_secondary (secondary key) may contain the secondary pho-
netic code, as determined by the DoubleMetaphone algorithm.

• Language contains the language in which an index value has been

entered, if the field contents are multi-lingual.
In multi-lingual Adlib SQL and Oracle databases, until 6.5.0 all
translations of multi-lingual field contents were indexed without
language indication, which made it impossible to make a lan-
guage-specific search for some term. From 6.5.0, term and word
indexes contain this extra column which makes searching in a
specific data language possible.

With these additions in Adlib 6.5.0, the size of SQL indexes may have
increased sixfold. Still, it allows for faster searching because Adlib can
directly use the proper index column without having to apply any in-
termediate processing.
In the future, you’ll be able to indicate explicitly how Adlib should
search a term index on a submitted term, for instance in the Stripped

form, or phonetically or in a specific language. It is possible in 6.5.0 to
search in a specific language via the Expert search language, and
search phonetically via the Search wizard, but the other search possi-
bilities have not been implemented yet.

 10

2.4 Pointer files

For Adlib 6.4.0 or older, there is one <database table>.pointerfiles

table per database table. Each pointer file in it is described in its own
row of the table. The available columns are: owner (maker of the
pointer file), title, number, selectionstatement (the search statement
or selection), hitcount (number of results), modification (date on
which the pointer file result was updated last), and data (contains this
pointer file as an XML document).

As a result of testing with large pointer files (with more than 100.000

hits) it was shown that the 6.3.0 implementation of pointerfiles per-
formed insufficiently in the SQL based versions of adlwin (this applies

both to the Microsoft SQL Server and the Oracle implementations).
Retrieving a pointerfile of over 100.000 hits could easily take over an
hour of processing time. The Adlib proprietary database implementa-
tion performed much better (30 seconds for the same pointer file).

To solve this problem in 6.5.0, the pointerfile format in the SQL imple-
mentation of Adlib has radically changed, and the pointer file reading
and writing algorithms have been rewritten. After the required conver-
sion procedure with the upgrade to Adlib 6.5.0 or higher, the modifi-
cations have been processed in your database; for users, the change
makes no difference.

2.5 The 6.5.0 pointer file structure

In the 6.5.0 pointer file structure, each pointer file is stored in four

separate tables: a table for the pointer file header, a table for the
pointer file hitlist, a table for the e-mail addresses for any SDI compo-
nent of the pointer file and a table for the access rights of the pointer
file. All four tables have the same “base name” that consists of the
name of the Adlib database with the extension “pointerfiles2”:

The extension pointerfiles2 was chosen deliberately to make a distinc-
tion between “old” style pointer files and “new” style pointer files. The
result of this is that “old” pointerfiles will be visible in pre-6.5.0 re-

lease versions of adlwin and the “new” style pointer files will only be
visible post 6.5.0 release versions of adlwin.

The pointer file header table structure is as shown in the figure below.

 11

Note that all pointer file header data elements (including SDI data)

are now expressed as separate columns. Also note that text columns

of indefinite length use the nvarchar(max) feature of SQL Server

2005, which implies that Adlib 6.5.0 can no longer be used on SQL
Server 2000.

The pointer file hitlist table structure is as follows:

 12

The hitlist table structure is very simple, it consists of rows of just two

numbers: the pointer file number and the priref of the record in the

pointer file.
The other two tables are just as simple. The pointer file e-mail list
table structure is as follows:

(The e-mail table is a separate table because each pointer file can

have multiple SDI e-mail destinations.)

The pointer file access rights table structure is as follows:

The access table access column of a pointer file may contain the fol-
lowing values: 0 (undefined access rights), 1 (none access rights), 2

(read access), 3 (write access), 4 (full access).

2.6 Record locks

There is one recordlocks table for the entire SQL database. Each row
in this table describes one record lock: the name of the database table

 13

to which the lock applies, the record number of the locked record, the

lock id and the time of locking. Retrieve all rows from this table to see

which locks are present at the moment.

Normally, record locks exist only while a record is being edited, to
prevent someone else from editing the record at the same time.
However, if the computer ever crashes, one or more record locks may
be left behind in the database, after which those records can not be
edited by anyone anymore. Then preferably use Adlib Designer to

remove the remaining record locks in a user friendly way. In MS SQL
Server Management Studio you can do this as well though, in the
record locks table. In the opened record locks table you can remove
all record locks at once via the following SQL query:
DELETE FROM [<my-database>].[dbo].[recordlocks]

Replace <my-database> by the actual name of your database, without

sharp brackets. Make sure that nobody is working in Adlib when you
execute this statement.

If currently people are at work in the database, and therefore you only
want to remove one specific remaining lock, then do this with:
DELETE FROM [<my-database>].[dbo].[recordlocks] WHERE

priref = <record-number>

Replace <record-number> by the actual record number, without the

sharp brackets.

2.7 Specific rights per record in separate table

Specific access rights per record, which have been made possible via
the Rights, Authorisation type option (see the Designer Help for more
information about this type of data protection), will be stored in a

 14

separate table from 6.5.0. The new table has three columns: priref

(repeatable), role and rights.

The advantage is that Adlib no longer has to read a record to find out
whether the current user has the proper access rights for the intended
action, which improves performance of Adlib.

2.8 ISO date tables

The 6.5.0 structure of ISO date indexes contains the dates entered by
the user (complete or incomplete) in a column named displayterm,
and a term column which will always automatically contain complete

ISO dates.

With 6.5.0, the data type of the term column has been changed from
a term index (SQL) or nvarchar2 index (Oracle) to a float resp. num-
ber index to allow for especially large dates (beyond - or + 9999-01-
01) in your data.

2.9 A single table for counters

In your Adlib SQL or Adlib Oracle database, there’s a separate table

called dbo.auto_numbering which contains all counters for all tables,
with automatically numbered fields as well as the named counters
introduced in 6.6.0 (see the ADAPL GetCounter function).

There are three columns in this table:

• The database_name column holds the names of any named coun-
ters and Adlib database names for automatically numbered fields.

Because the named counters are stored in an existing database
table structure, the name of a named counter is saved in the not

quite appropriately named database_name column. The ad-
vantage of using the existing structure is that you don’t need a
database conversion to apply named counters.

• The tag column contains field tags of any automatically numbered
fields.

• The counter column holds the most recently assigned counter
values.

 15

2.10 Examples

Suppose you are looking for all records in the document table, in
which the author field holds the name Fruithof, Th. In Adlib, rec-

ords of names of persons and institutions are stored in the people file.

The names themselves are in the name field. For this field an index is
available so that Adlib will be able to quickly search for names, in this
case the index is the people_name table. From a record in document
there is a link to this field, via a link reference: only the record num-
ber of the linked name record will be saved in a documentation record.
So you’ll first have to search people_name for the record number of
Fruithof, Th. Because domains occur in this index – domains usual-

ly appear in thesau and people and their indexes – and you are look-

ing for the author Fruithof, Th., you have to execute an SQL state-

ment similar to the following: select * from people_name where

term like 'fruit%' and domain='author'. In our example data-

base one record is found, for the relevant author, with record number

20. So it is this record number that has to occur in the index of the
field in document in which authors are stored: document_author,
since in there only the record number of the name record occurs (20,
in this case), not the searched name itself. With the following query
you can find out in which documentation record the name record 20
(author Fruithof) appears: select * from document_author where

term = '20'. In our example this turns out to be record 1 (in docu-

ment, as stated). You can retrieve this record via e.g.: select * from

document where priref = '1'.

With somewhat more advanced SQL statements it’s also possible to
execute these steps all at once (or to enter more complex queries),
for example:

SELECT document.priref, document.data

FROM document

INNER JOIN document_author ON document.priref = docu-

ment_author.priref

INNER JOIN people_name ON document_author.term = peo-

ple_name.priref

WHERE people_name.term like 'fruit%'

and domain='author'

and (document.priref >= 0 and document.priref <= 500)

order by document.priref

Via the inner joins the keyfields are indicated with which the tables, in
which you want to search, are linked together in Adlib. In this query
are also specified the priref limits of the dataset you want to search,
and a sort criterium.

A similar example for searching on a certain title in the same dataset

 16

(here Books), for which you only want to retrieve record numbers, can

look as follows:

SELECT distinct document.priref

FROM document

INNER JOIN document_title ON document.priref = docu-

ment_title.priref

INNER JOIN wordlist ON document_title.term = word-

list.wordnumber

WHERE wordlist.term like 'w%'

and (document.priref >= 0 and document.priref <= 500)

order by document.priref

Some other examples of handy queries:

• select all document records in which a field with occurrence 5 ap-

pears: select * from document where data.exist
('/record/field[@occ="5"]') = 1

• select all document records in which a field with tag ‘ti’ appears:
select * from document where data.exist

('/record/field[@tag = "ti"]') = 1

• select all document records in which a field with the ‘creation’
attribute appears: select * from document where data.exist
('/record/field[@creation]') = 1

◼ Using the wordlist

Noteworthy here is the special wordlist index. The wordlist contains all
unique words that occur in all word-indexed (free text) fields. These
are fields with long texts, such as titles or descriptions.

 17

There is only one wordlist for all main tables together. Which words

occur in this file can easily be discovered via the SQL statement: se-

lect * from wordlist.

In this index you can see that each term has a word number. And just
like with linked fields, in long-text fields only the word numbers are

stored, not the literal text, again to save disk space. You can observe
this in the following query:

select top 1000 term, priref from document_title

From record 100 for example, three words have been indexed, with
the word numbers 840, 4515 and 4516. With the following query, for
instance, you can retrieve these words from the wordlist (the words
from record 100 which have been indexed in the title index in the doc-
ument database – in SQL these are both tables of course):

select wordlist.term from wordlist inner join docu-

ment_title on wordlist.wordnumber = document_title.term

where document_title.priref=100

 18

To retrieve all words from the title index for a set of records (99-101),

and each word accompanied by the record number of the source

document record while sorted on term, you would use the following
query:

select wordlist.term,document_title.priref from wordlist

inner join document_title on wordlist.wordnumber = docu-

ment_title.term where document_title.priref in (99,100,101)

order by term

Another approach is the following: if you are looking for documenta-
tion records of which the title contains the word “jungle” for example,

then you’ll first have to retrieve its word number, for instance via:
select * from wordlist where wordlist.term = 'jungle'. In our

database, this word has number 49054. Now you have to look up this
number in the title index of document: select * from docu-

ment_title where document_title.term = '49054'. In our exam-

ple only one record number is found: 655. And finally we can retrieve
this record from document, via: select * from document where

document.priref = '655'.

You can search the wordlist truncated as well, via the % character. For
example: select * from wordlist where wordlist.term like
'%sing%'

In a normal wordlist, each word appears only once per data language

(or without data language). If the wordlist has become corrupted for
whatever reason, then words may appear more than once per data
language. Such corruption must be repaired. One of the ways to do

this is to remove all duplicates from the wordlist manually, after which
you could use the Indexcheck tool to repair all word indexes (by
means of a specific list of all word-indexed tags per Adlib database).

This way, the wordlist will only be repaired where it is corrupted, and
ik won’t need to be rebuilt. With the following query you can find all
duplicates in the wordlist:

select wordlist.term, count(*) as WordCount from wordlist

group by wordlist.term having COUNT(*) > 1 order by term

 19

As long as a term doesn’t appear more than once for the same data

language, or as long as a term doesn’t appear more than once without

data language, everything’s fine. In the other case you must delete
the redundant duplicates. For example, if you want to remove the
word with word number 186, then execute the following query:

delete from wordlist where wordnumber = 186

As mentioned, you must now repair all word indexes in which that
word (really the word number) appears, using Indexcheck. Do make
sure first that no-one is working in Adlib at the moment.
If possible, see the Adcopy, Indexcheck and Linkrefcheck manual (not

available for download) for more information about finding and repair-

ing data corruption.

◼ The columns of a table

Further note that the left window pane of SQL Express Manager 2005

(the tables list) also displays information about the fields (columns)
which are present in the relevant relational table, about the PK (pri-
mary key) on which the table can be linked, and the type of the varia-
ble of said fields, for instance:

 20

 21

3 Remarks

• SQL Server Management Studio Express may also be run from the
network, by connecting to the SQL server through a remote desk-
top connection.

• SQL Server keeps information for internal purposes in sys… tables.

These files may never be altered manually.

• Through the pop-up menu (right-click your SQL Server database,
you may create or schedule backups, or execute a recovery

through Restore.

• Search results in SQL Server Management Studio can be stored in

.csv or .txt format, if desired, by right-clicking the result table and
choosing Save result as in the pop-up menu.

• If you wish you change the structure of a database through De-

signer, do first make a backup of your \data folder (the .inf files)
and of your SQL Server database (or Oracle database), and then
take e.g. the Adlib SQL Server database offline so that no-one can
change or enter records. When you’re done changing the database
structure, you’ll have to bring the database online again.

In SQL Server Enterprise Manager you can do this via the Take of-
fline and Bring online options in the pop-up menu of the database.

In SQL Server Management Studio Express these “database state”
options are hidden, and there is only the read-only Database state
option available on the Options tab of the Database properties.
You can take a database offline via a Transact-SQL statement us-
ing e.g. sp_dboption procedure. For instance, to take the

AdlibSQL database offline, you execute the following statement:
sp_dboption 'AdlibSQL','offline','true'. Before you do this,

make sure there are no active processes using the database. You
can make the database online again by executing the following

statement: sp_dboption 'AdlibSQL','offline','false'.

 22

4 Changing the SQL database collation

On the Options tab of the SQL database properties the Collation option
(= sorting order) has usually been set to Latin1_General_CI_AI (CI_AI
stands for case-insensitive/accent-insensitive).

If that is the case for entry languages which use supplementary char-
acters (like Khmer), then searching in Collections will yield incorrect
results.

Then you must change the Collation to Latin1_General_100_CI_AI
(available from SQL Server 2012). This can be done on an existing

database. Use the following procedure in SQL Server Management
Studio:

1. Execute the following SQL command (and replace “model-
application5” by the name of your database):

USE master;

GO

ALTER DATABASE [model-application5]

COLLATE Latin1_General_100_CI_AI ;

GO

2. When you execute this you may get an error like this:

Msg 5075, Level 16, State 1, Line 3

The column 'thesaugeo_GIS.spatiallocationtext' is de-

pendent on database collation. The database collation

cannot be changed if a schema-bound object depends on

it. Remove the dependencies on the database collation

and then retry the operation.

Msg 5072, Level 16, State 1, Line 3

ALTER DATABASE failed. The default collation of database

'model-application5' cannot be set to Lat-

in1_General_100_CI_AI.

3. This means you will need to drop the given table thesaugeo_GIS
with (replace the database name again and possibly the table
name as well):

USE master;

GO

DROP TABLE [model-application5].dbo.thesaugeo_GIS;

GO

4. Now run the ALTER DATABASE command from step 1 again to suc-

cessfully change the database collation.

 23

5. Then reindex all indexes in the database so that they reflect the

selected collation. This should be done with Axiell Designer version

7.7.3.868 or higher.

